Industry Case Study: NORM in the oil & gas sector

NORM and Natural Radiation Management, 19th - 20th April 2010
Hilton Paddington, London
Mark Liddiard & Joe Toole – WorleyParsons

Overview

► Recap previous Radon survey in Dec 2008
► Follow-up Radon survey July 2009
► Radon dose assessment
► NORM waste accumulation (pending disposal)
► Radiological risk assessment for platform
Background

- Previous surveys on platform identified presence of NORM; elevated gamma dose rates at some separators and at waste drums.

- Clients' Regulator requested measurements of both Radon-222 and its alpha daughters (progeny) on the oil platform, both during ambient conditions and during work/maintenance activities.

- The results of exploratory radon measurements are to be made to confirm or otherwise that inhalation doses due to radon and progeny are very much less than those from external gamma radiation.

Choice of Radon monitoring system

- Several options explored
 - Track detectors – typically 3-month exposures, no daughters \(\times \)
 - Electret – typically 2-7 days exposure, no daughters \(\times \)
 - FemtoTech Pulsed ion chamber, real-time, no daughters \(\times \)
 - AlphaGuard +AlphaPM – real time, includes daughters \(\checkmark \)

- Real time measurements and use of DataExpert software package will allow results for all areas to be displayed and reported prior to leaving platform
Radon and Radon progeny measurements

- **AlphaGuard radon monitor**
 Radon gas diffuses passively through a filter into an ionisation chamber
 Sampling period 10 minutes
 Detection limit ca 10 Bq/m³ radon-222

- **AlphaPM (progeny meter)**
 Internal pump, high-precision flowmeter, filter intercepts Rn progeny, alpha decays counted by semiconductor detector
 Sampling period 10 minutes, units EEC, Bq/m³
 Synchronised to AlphaGuard

- **DataExpert database software package**

Instruments deployed

Detector display

WorleyParsons Office basement, Stirling
Oil/water sampling cabin

Oil/Water sampling cabin

Area 14 Mar 15th Dec 2003

Economics
Between separator tanks
Beside NORM solid waste drums
All Radon results (Dec 2008 survey)
A follow-up to the Dec 2008 survey
- sampling taking place in the summer period, on 28th and 29th July 2009
- temperatures were substantially higher than before (20-32 ºC compared to typically 12 -22 ºC in December) and much less wind.
- Most sampling locations were at or close to those which were sampled in December, although overall there were fewer samples since the survey was carried out over two days compared to four days in December.
- In total, eight sites on the Production deck were sampled using the same equipment as before.
Radon results

- Ten-minute average Radon-in-air concentrations ranged from < 10 Bq/m³ to 53 Bq/m³ across 24 sample sites on the oil platform over both surveys.

- The highest concentration occurred next to a location where pipe maintenance work was being carried out (possibly linked) but was only 13% of the relevant limit of 400 Bq/m³ for workplaces.

- No meaningful values of radon progeny could be calculated given the very low radon concentrations; EF median 0.4, mean 0.5.

Preliminary radon dose assessment

- Use maximum observed 10-minute reading 53 Bq/m³ Rn across whole year (very conservative).

- Use Equilibrium Factors suggested by UNSCEAR (typically 0.4 for indoors, 0.6 for outdoors).

- Use an effective dose conversion factor for radon of 9 nSv/hr per Bq/m³.

- Use an occupancy factor appropriate for areas on the oil rig (rounded 2000 hrs/yr).

Dose (inhalation) = 53 X 0.6 X 9 X 2000 = 0.57 mSv/yr
Since the first realisation in 2003 that naturally occurring radioactive material (NORM) was present on the oil & gas platform, the company initiated a series of radiological surveys. These were carried out between 2005 and 2009 and they continue under a scheduled annual programme. These surveys showed that NORM was present in tubulars, pumps, valves, separators and other top plant, consistent with the NORM issues seen on most other oil and gas platforms around the world.

Using actual recorded measurements of radiation and radionuclide activity concentrations available for the platform, estimates of radiation exposure and effective doses have been made for the highest realistic potential exposure situations.
The clean-out of the Separators in September 2007 has had two effects:

1. The residual gamma dose rates at 1 metre at the two Separators dropped from between 1 - 4 µSv hr$^{-1}$ to between < 0.16 to 0.6 µSv hr$^{-1}$
2. Gamma contact dose rates measured in April 2008, December 2008 and April 2009 at the drums into which NORM sludge has been transferred from the Separators are as high as 60 – 75 µSv hr$^{-1}$, some 4 to 5 times higher than when the material was in the Separator. This area is segregated.

- for one separator, recorded contact gamma dose rates were 0.1 to 0.7 µSv hr$^{-1}$ after cleanout in Sept 2007 and 3.5 µSv hr$^{-1}$ in April 2008 i.e. NORM is increasing again in separator.
- Company are in advanced discussions with Regulator to transfer NORM waste from drums to holding tank for slurry discharge to disused well.
Dose calculations

- **Skin dose estimate**

 Skin dose (µSv) = \((1.89 \text{ µSv hr}^{-1} / \text{Bq cm}^{-2}) \times \text{Bq cm}^{-2} \times \text{hr (exposure time)}\) [dose conversion factor ref Healy 1971, to be refined for more recent beta dose models]

- **Inhalation dose** = \((\text{m}^3 \text{ hr}^{-1}) \times (\text{mg m}^{-3} /1000) \times (\text{Bq g}^{-1}) \times (\text{Sv Bq}^{-1} \times 1,000,000) \times (\text{hr yr}^{-1}) = \mu\text{Sv yr}^{-1}\) [summed for 3 radionuclides]

- **Ingestion dose** = \((\text{mg hr}^{-1}) \times (\text{Bq g}^{-1} /1000) \times (\text{Sv Bq}^{-1} \times 1,000,000) \times (\text{hr yr}^{-1}) = \mu\text{Sv yr}^{-1}\) [summed for 3 radionuclides]

- **Direct exposure** to gamma rays in µSv are calculated using the measured dose rate in µSv hr\(^{-1}\) at a particular distance from the source and an assumed residence time at that distance (hours).

Maximum recorded activity concentrations/dose rates

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge from drums</td>
<td>(^{226}\text{Ra}) 221 Bq g(^{-1}) dry wt</td>
</tr>
<tr>
<td></td>
<td>(^{228}\text{Ra}) 0.49 Bq g(^{-1}) dry wt</td>
</tr>
<tr>
<td></td>
<td>(^{210}\text{Pb}) 197 Bq g(^{-1}) dry wt</td>
</tr>
<tr>
<td>Tubular from well</td>
<td>3000 cps</td>
</tr>
<tr>
<td></td>
<td>17.3 Bq cm(^{-2})</td>
</tr>
<tr>
<td>Separators before cleaning</td>
<td>15 µSv hr(^{-1})</td>
</tr>
<tr>
<td>Contact dose rates at NORM drums</td>
<td>75 µSv hr(^{-1})</td>
</tr>
</tbody>
</table>
Maximum readings, continued

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose rates 1 metre from NORM drums</td>
<td>5 µSv hr⁻¹</td>
</tr>
<tr>
<td>Water from feed tank effluent</td>
<td>²²²Rn 150.4 Bq L⁻¹</td>
</tr>
<tr>
<td>Radon at production deck level</td>
<td>²²²Rn 53 Bq m⁻³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Exposure route</th>
<th>Receptor</th>
<th>Estimated dose (mSv yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>²²⁶Ra in sludge</td>
<td>Gamma exposure 1 metre from separator prior to clean-out</td>
<td>worker</td>
<td>0.8</td>
</tr>
<tr>
<td>²²⁶Ra in sludge</td>
<td>Gamma exposure 1 metre from separator after clean-out</td>
<td>worker</td>
<td>0.12</td>
</tr>
<tr>
<td>²²⁶Ra in sludge</td>
<td>Gamma exposure 1 metre from isolated NORM waste drums, 10 minutes per day</td>
<td>worker</td>
<td>0.17</td>
</tr>
<tr>
<td>²²⁶Ra, ²²⁸Ra and ²¹⁰Pb in sludge</td>
<td>Inhalation of resuspended dried sludge following spill</td>
<td>worker</td>
<td>0.021</td>
</tr>
<tr>
<td>²²⁶Ra, ²²⁸Ra and ²¹⁰Pb in sludge</td>
<td>Inadvertent ingestion of dried sludge following spill</td>
<td>worker</td>
<td>0.04</td>
</tr>
<tr>
<td>²²²Rn in air</td>
<td>Inhalation of radon and radon progeny on production deck, 12 hours sustained exposure</td>
<td>worker</td>
<td>0.0035</td>
</tr>
</tbody>
</table>
Unlikely/avoided exposure scenarios

<table>
<thead>
<tr>
<th>Source</th>
<th>Exposure route</th>
<th>Receptor</th>
<th>Estimated dose (mSv yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{226})Ra in sludge</td>
<td>Gamma exposure at surface of NORM waste drums</td>
<td>worker</td>
<td>15</td>
</tr>
<tr>
<td>(^{226})Ra, (^{228})Ra and (^{210})Pb in feed water</td>
<td>Inadvertent ingestion of water as potable water (500 litres per year)</td>
<td>worker</td>
<td>21.9</td>
</tr>
<tr>
<td>(^{222})Rn in air</td>
<td>Inhalation of radon and radon progeny in unventilated separator (estimated 3.5 GBq (^{226})Ra) prior to clean-out, ten minutes exposure</td>
<td>worker</td>
<td>23</td>
</tr>
</tbody>
</table>

Conclusions

- Under realistic exposure scenarios, estimated annual doses due to the presence of NORM, including Radon, on the studied platform range from 0.0035 to 0.8 mSv which is between 1 and 4 orders of magnitude lower than the annual (5-year) exposure limit of 20 mSv.
- In two unlikely exposure scenarios, the annual (5-year) exposure limit of 20 mSv is exceeded, however in one case the water considered is far from potable quality and in the other case, exposures in the confined space considered would not be realised due to standard risk mitigation procedures and ventilation.
- The use of written procedures, worker training and restricted area designation can avoid worker doses which approach the annual dose limit.
Contact details

mark.liddiard@worleyparsons.com
joe.toole@worleyparsons.com
+44 (0)1786 477320
www.worleyparsons.com

40 Countries
137 Offices
29,100 Staff

- Other offices currently involved in this area of work include Dubai, Abu Dhabi and Oman.